Posts Tagged ‘Gödel

19
Ene
09

Breve descripción del teorema de Gödel

godel Paul Strathern en «Russell en 90 minutos» describe brevemente y con amenidad el teorema de Gödel:

«Segun la prueba de Gödel, todo sistema complejo, tal como las matemáticas, que trate de fundarse sobre axiomas está condenado a contener proposiciones aparentemente verdaderas cuya verdad o falsedad no puede ser probada dentro de él. Se tiene que introducir siempre otro axioma de fuera del sistema a fin de probar la verdad o la falsedad de tales proposiciones. Pero tan pronto como se introduce el nuevo axioma que las hace demostrables se generan nuevas proposiciones cuya verdad o falsedad no puede ser probada. En otras palabras, todo intento de basar las matemáticas en un conjunto de axiomas fundamentales está condenado al fracaso. Las matemáticas son incompletas por su propia naturaleza.»


Esta es una explicación del teorema de Gödel que, aunque deba precisarse más (ver en la Wikipedia para mayor profundidad), es bastante útil para entender los argumentos de mi blog en que hago uso de este teorema.

15
Ene
09

Russell contra Formalistas e Intuicionistas

russell-2 Bertrand Russell, en «La evolución de mi pensamiento», capítulo 10:

«Principia Mathematica tuvo en los primeros momentos una acogida un tanto desfavorable. La filosofía matemática en el Continente estaba dividida en dos escuelas: los Formalistas y los Intuicionistas, y las dos rechazaban totalmente la derivación de las matemáticas de la lógica y se aprovechaban de las contradicciones para justificar su repudiación.

Los Formalistas, dirigidos por Hilbert, mantenían que los símbolos aritméticos son simples signos sobre el papel, vacíos de sentido, y que la aritmética consiste en ciertas reglas arbitrarias, como las reglas del ajedrez, con las cuales pueden manipularse tales signos. Esta teoría tenía la ventaja de que evitaba toda controversia filosófica, pero tenía la desventaja de que era incapaz de explicar la aplicación de los números al acto de contar. Todas las reglas de manipulación dadas por los Formalistas se verifican si el símbolo 0 se toma como significando cien, mil o cualquier otro número finito. La teoría es incapaz de explicar lo que quiere decirse con frases tan simples como ‘hay tres hombres en esta habitación’ o ‘hubo doce apóstoles’. La teoría es adecuada para hacer sumas, pero no para las aplicaciones del número. Puesto que son las aplicaciones del número lo que la hacen importante, la teoría de los Formalistas debe considerarse como una evasión insatisfactoria.

La teoría de los Intuicionistas, dirigidos por Brouwer, exige un examen más serio. El nervio de esta teoría es la negación del principio del tercero excluido. Sostiene que una proposición solamente puede tenerse por cierta o falsa cuando existe algún método para averiguar que sea una cosa u otra. Uno de los principales ejemplos es la proposición ‘hay tres sietes sucesivos en la determinación decimal de π’. Hasta donde ha podido precisarse el valor de π, no hay tres sietes sucesivos, pero no existe razón para suponer que no los haya después. Si en lo futuro apareciese un punto en que se dieran tres sietes sucesivos, la cuestión quedaría decidida, pero si no se alcanza tal punto, ello no prueba que no exista más adelante. Por tanto, aunque podríamos llegar a demostrar que hay tres sietes sucesivos, nunca podremos probar que no los hay. La cuestión tiene gran importancia en relación con el análisis. Las expresiones decimales con un número infinito de cifras se producen algunas veces de acuerdo con una ley que nos permite calcular tantos términos como queramos. Pero algunas veces (así hemos de suponerlo) no proceden de acuerdo con ley alguna. Sobre los principios generalmente aceptados, este último caso es infinitamente más corriente que el primero, y, a menos que admitamos tales decimales ‘sin ley’, toda la teoría de los números reales se viene abajo y, con ella, el cálculo infinitesimal y la casi totalidad de las matemáticas superiores. Brouwer afrontó la posibilidad de este desastre sin titubear, pero la mayor parte de los matemáticos la hallaron insufrible.

El problema es mucho más general de lo que parece en los anteriores ejemplos matemáticos. El problema es: ‘¿Tiene sentido decir que una proposición es cierta o falsa cuando no hay medio de decidir la alternativa?’ o, para expresar la cuestión en otra forma, ‘¿Debe identificarse ‘cierto’ con ‘comprobable’?’ Yo no creo que podamos hacer tal identificación sin caer en grandes y gratuitas paradojas. Tomad una proposición como la siguiente: ‘El día 1 de enero del año 1 antes de Cristo nevó sobre la isla de Manhattan.’ No existe método concebible por el que podamos descubrir si esta proposición es verdadera o falsa, pero parece absurdo mantener que no es ninguna de las dos cosas. No seguiré tratando este tema, ya que los discutí con detalle en los capítulos XX y XXI de Investigación sobre el significado y la verdad, al que volveré a referirme en otro capítulo. Entre tanto, debo suponer que la teoría de los Intuicionistas ha de ser rechazada.»


Vemos en este texto que Russell cree haber desmontado las bases de formalistas e intuicionistas con argumentos bastante serios. Aunque hay que recordar que el logicismo que defendía Russell tampoco quedaba libre de objeciones graves, puesto que el teorema de incompletitud de Gödel acabó con el sueño de reducir las matemáticas a la lógica. En el libro «El desarrollo de la lógica» de William y Martha Kneale se dice que, a partir de los importantes resultados de Gödel, carecería de objeto la posibilidad de reducir toda la matemática a la lógica si, al mismo tiempo hubiera que admitir que la lógica incluye dentro de sí todos y cada uno de los diversos apartados de la matemática.

Me llama la atención en la crítica que hace Russell a los intuicionistas (que son una variedad de los matemáticos constructivistas) cuando dice esto: «Hasta donde ha podido precisarse el valor de π, no hay tres sietes sucesivos, pero no existe razón para suponer que no los haya después«. Con esta idea da a entender que las matemáticas se «descubren», no se «inventan» -construyen-. Así, se puede llegar a la conclusión de que los «entes matemáticos» EXISTEN previamente en un «mundo mental» del que los tomamos. Al fin y al cabo, las proposiciones matemáticas «correctas» bajo un sistema axiomático lo son se hagan cuando se hagan las demostraciones de las mismas -incluso aunque no se realicen nunca-, no depende de que las «construyamos»: ¿o acaso los términos del número π varían con el tiempo, o el binomio de Newton cambia su desarrollo según el año en que lo ejecutemos?

Claro que cabría tener en cuenta qué significa «inventar», que tiene dos acepciones según un diccionario on line: «1. tr. Hallar o descubrir una cosa nueva o no conocida y 2. Imaginar, crear.» Y, en el mismo diccionario, las acepciones de «descubrir» que tienen que ver con lo que estamos tratando son: «1. tr. Encontrar, hallar algo desconocido; 2. Inventar; 3. Venir a saber algo que se ignoraba; 4. Alcanzar a ver, registrar; 5. Manifestar, dar a conocer lo que no es público; 6. tr. y prnl. Destapar lo que está cubierto.» Vemos relaciones evidentes, el fundamento de lo que significan ambas palabras parece el mismo. Edison, cuando «inventó» la bombilla, se puede decir que «descubrió» que con un filamento de bambú carbonizado montado en el tubo central de cristal de una lámpara incandescente en la que se ha hecho el vacío hacía que dicho filamento alcanzara la incandescencia durante largo tiempo sin fundirse. Entonces, ¿qué es «inventar» sino «descubrir»? En todo caso habría una gradación de complejidad entre ambas palabras, siendo más elaborado «inventar» que «descubrir», pero el fundamento, la esencia es la misma en ambos casos.

01
Ene
09

Dios, completitud e infinitud

godel-escher-bach1 Kurt Gödel es famoso por sus aportaciones revolucionarias a la lógica matemática (como curiosidad cabe mencionar que llegó a formalizar lógicamente el argumento ontológico de San Anselmo). Douglas R. Hofstadter, en su famoso y «gran» libro -en todos los sentidos- «Gödel, Escher, Bach», resume en una corta frase la aportación más destacada de Gödel:

«Toda formulación axiomática de teoría de los números incluye proposiciones indecidibles«.

Este es el llamado «teorema de incompletitud de Gödel« que lleva a afirmar que no pueden existir ‘sistemas lógicomatemáticos completos‘, «que permitan definir los números naturales como un conjunto« (tal y como se precisa en la Wikipedia), fundamentados en un ‘sistema axiomático finito’ sin que sean a su vez inconsistentes -con lo que, tomando por válido el principio de explosión, se deduciría cualquier cosa-. Es decir, para que un sistema lógico-matemático sea «completo» (que no contiene afirmaciones que ni se pueden demostrar ni refutar) sin ser inconsistente debería tener infinitos axiomas; y además, para poderse aplicar el teorema de Gödel, debería ser un sistema en el que haya algún procedimiento efectivo que decide si una cierta declaración es un axioma (como explica en un artículo Eduardo Piza Volio, un «procedimiento efectivo» es una lista de instrucciones o un algoritmo que no requiera de ninguna ingeniosidad para ser ejecutado). Esto es imposible para el ser humano, pues es finito, pero no sería así para un supuesto ser todopoderoso: Dios. Un Ser al que, en principio, los humanos no podemos demostrar ni refutar de forma concluyente (siendo su existencia para nosotros, aparentemente, una «proposición indecidible«, con lo que nuestra lógica y conocimiento no sería completo).

aleph3 Dios -si existe- debería ser capaz de construir un sistema lógico-matemático completo. En mi post «Dios, completitud e inconsistencia», proponía que Dios, al construir este sistema, debería ser capaz de contradecirse, de manejar la inconsistencia en virtud de su omnipotencia. Además, afirmo que si -de existir- Dios es omnipotente o todopoderoso, no tendría por qué estar sujeto a las leyes de la lógica; de hecho, se podría decir que Dios «crearía» las leyes de la lógica. Pero ahora bien, también podría construir un sistema completo mediante un número infinito de axiomas, lo que implicaría la «infinitud» de Dios (esto recuerda al Dios y el Infinito Absoluto del que habla Georg Cantor ). Resumiendo: si Dios es completo, debe ser infinito y/o inconsistente.

13
May
08

Dios, completitud e inconsistencia

«La lógica es invencible porque para combatir la lógica es necesario utilizar la lógica». Pierre Boutroux.

Como a veces he hecho, voy a escribir estas líneas como un juego matemáticofilosófico extravagante más parecido al delirante «poema cosmogónico» que es el «Eureka» de Edgar Allan Poe que a un ensayo filosófico al uso -pues muy posiblemente algunos argumentos no serían del agrado de Torkel Franzén-, aunque puedan tener su validez dentro de su enfoque místico.
Existen tres principios básicos del funcionamiento de la lógica aristotélica clásica: el principio de identidad («todas las cosas son las que son»), el de no contradicción («no pueden ser ciertos a la vez A y su negación noA») y el del tercero excluido («todo enunciado es o verdadero o no verdadero»). La «lógica multivalente» es aquella que no tiene el principio del tercero excluido entre sus premisas, pues tiene más ‘valores de verdad’ aparte de los de verdadero o falso, como de indeterminado. Pero los dos primeros principios se siguen cumpliendo y los sistemas son consistentes (no se dan contradicciones).
Imaginemos ahora la Nada, antes de una hipotética Creación. No existiría todo lo que conocemos y damos por hecho, por lo que no habría tampoco leyes de la lógica: sería posible la contradicción.
Veamos algunas consecuencias.
Podría decirse que habría «cero entes» en la Nada (dejando de lado que quizá los conceptos mismos de ‘cero’ o de ‘conjunto vacío’ pudieran no tener sentido planteárselos en la Nada) y el cero es igual a cero, afirmación que verificaría el principio de identidad, pese a no tener la obligación de cumplirlo necesariamente como hemos dicho con anterioridad. Pero 0 = 0 sólo sería uno de los resultados posibles porque, al no existir el principio de no contradicción, podríamos escribir la contradicción 0 = 1 y, a partir de ahí, 0 = 1 + 0 = 1 + 1 = 2 y todos los números naturales, luego los enteros y demás, llegando finalmente a poderse estructurar todo un sistema inconsistente matemático (por el momento sólo nos circunscribimos a las matemáticas y la lógica, aunque las leyes del razonamiento lógico afecten a otros campos del conocimiento, como la Ciencia o la Teología Natural, que trataremos más adelante). Sin embargo, todo sería una inmensa indeterminación, ya que se podría demostrar cualquier cosa debido a la contradicción (posible de no existir en la Nada el principio que la impide).
En el interesante y muy aprovechable libro de John D. Barrow, «La trama oculta del universo», vienen unas excelentes explicaciones -a un nivel accesible- de lógica y matemáticas que usamos en este artículo: las «definiciones» al inicio del presente texto que aclaran y sirven de resumen simplificado de cada uno de los tres principios lógicos aristotélicos y los pequeños párrafos que transcribiremos a continuación, además de la cita de Pierre Boutroux y la del Barón de Montesquieu que aparecerá más adelante. De Gödel dice que «estableció que cualquier sistema lógico lo bastante grande como para contener la aritmética ordinaria era necesariamente incompleto». Éste es el teorema de la incompletitud de Gödel, pero también hay un teorema que asevera que «el que un sistema sea consistente es completamente equivalente a que algún enunciado dentro del sistema sea inderivable. No es difícil ver que este curioso enunciado es verdadero. En efecto, si el sistema es consistente, entonces no debe ser posible derivar el enunciado que dice que algo es verdadero y que se negación también es verdadera. Por lo tanto, este es un enunciado inderivable. Recíprocamente, si el sistema es inconsistente, entonces, por definición, se puede probar que algún enunciado y su contrario son ambos verdaderos. Si esto es así, puede probarse que un enunciado cualquiera será verdadero. Por lo tanto, no habría enunciados inderivables en un sistema inconsistente».

El teorema de incompletitud de Gödel lo impide, pero se buscó infructuosamente durante mucho tiempo que «utilizando las reglas de deducción se pudiera demostrar que cualquier fórmula que se pueda formar con los símbolos de la aritmética es o verdadera o falsa. Si es posible una tal omnipotencia matemática, se dice que el sistema lógico es completo«. El teorema de Gödel (que niega la completitud de ciertos sistemas: «nunca se podrá encontrar un sistema axiomático que sea capaz de demostrar todas las verdades matemáticas y ninguna falsedad», como viene en la Wikipedia) se sustenta en leyes lógicas como el principio de no contradicción pero, eliminándolo, un sistema lógico puede ser completo a costa de la inconsistencia y, por tanto, no revestiría en principio de interés debido a su indeterminación intrínseca: todo podría demostrarse en el sentido que quisiéramos, «toda fórmula tiene prueba».

Como hemos visto, la inconsistencia nos lleva a que cualquier enunciado sea verdadero, lo que en el fondo es una indeterminación total que no nos sirve en Ciencia (no nos permitiría concretar nada, ni hacer predicciones de hechos), pero, supuestamente, haría posible todo: si -de existir- Dios es omnipotente o todopoderoso, no tendría por qué estar sujeto a las leyes de la lógica; y nuestro universo podría ser sólo un caso particular con estas tres leyes lógicas restrictivas -y en realidad sólo dos, porque el principio del «tercero excluido» puede no darse en todo ámbito de lo que conocemos- que percibimos mediante nuestro sentido común en el seno de un sistema completo e inconsistente; omnipotente pero indeterminado y regido por un Ser que incluye distintas leyes en este caso particular que es nuestro universo, siendo éste una parte consistente e incompleta dentro de un total inconsistente y completo.

En definitiva, Dios puede contradecirse. Por responder a una cuestión expuesta por Homer Simpson que me propuso un amigo mío: «¿Puede Dios crear una rosquilla tan grande que ni él pueda acabarse?», pregunta que en realidad es una reformulación de la «paradoja de la omnipotencia». Claro que sí, pues puede contradecirse al poder ser «completo»: Dios, al ser todopoderoso, omnipotente debería tener una capacidad potencial para crear un sistema completo que contenga a la aritmética; pudiéndolo hacer si es capaz de «manejar» la inconsistencia. «Existe un dicho según el cual si los triángulos concibiesen un dios, lo imaginarían con tres lados», dijo el Barón de Montesquieu, por lo que, pese a la aparente sorpresa y nuestra dificultad para imaginarlo, no debiera ser vista como inviable o descabellada la idea de un Dios que pueda no estar atado al principio de no contradicción (pero en cambio incluyéndolo en un universo que Él decide crear).

Si en la Nada no existe el principio de no contradicción, todo enunciado es verdadero como dije antes, y cero (la Nada) es, en principio, igual a cualquier cosa. Más que haber la Nada en el comienzo, sería el Caos -¿equivalente a la idea de un Dios o incluido en Él?-, producto de la «inmensa indeterminación» que mencionamos arriba. Un Caos como viene recogido en algunas leyendas o mitos (o incluido en algunas teologías) y hay un Dios que lo ordena todo y así «crea» nuestro universo (en el que se incluyen las tres leyes lógicas aristotélicas).

Quizá las mitologías griega y egipcia no anduvieran erradas al creer en un caos primigenio (que «toma conciencia de sí mismo» en el caso de los egipcios: ver la «Mitología Universal» de Juan B. Bergua) y la Creación sería el ordenamiento de todo; teorías como la del inconsciente colectivo y los arquetipos de Carl Gustav Jung podrían llegar a explicar, como un remedo de «implante» divino en el alma humana, el por qué algunas leyendas tienen a una situación caótica (y su ordenamiento) como Origen de las cosas.




Categorías

Archivos

Blog Stats

  • 272.149 hits